SUBMANIFOLDS IN DE SITTER SPACE-TIME SATISFYING $\Delta H = \lambda H$

BY

BANG-YEN CHEN

Department of Mathematics, Michigan State University
East Lansing, Michigan 48824-1027, USA

ABSTRACT

In [3] the author initiated the study of submanifolds whose mean curvature vector H is an eigenvector of the Laplacian Δ and proved that such submanifolds are either biharmonic or of 1-type or of null 2-type. The classification of surfaces with $\Delta H = \lambda H$ in a Euclidean 3-space was done by the author in 1988. Moreover, in [4] the author classified such submanifolds in hyperbolic spaces. In this article we study this problem for space-like submanifolds of the Minkowski space-time E_1^m when the submanifolds lie in a de Sitter space-time. As a result, we characterize and classify such submanifolds in de Sitter space-times.

1. Introduction

Let E_1^m be the *m*-dimensional Minkowski space-time with the standard flat metric given by

(1.1)
$$g = -dt^2 + \sum_{j=2}^{m} dx_j^2,$$

where $(t, x_2, ..., x_m)$ is a rectangular coordinate system of E_1^m . For a positive number r and a point $c \in E_1^m$, we denote by $S_1^{m-1}(c, r)$ and $H^{m-1}(c, -r)$ the de Sitter space-time and the hyperbolic space defined respectively by

$$(1.2) S_1^{m-1}(c,r) = \{x \in E_1^m : \langle x - c, x - c \rangle = r^2\},$$

$$(1.3) H^{m-1}(c,-r) = \{x \in E_1^m \colon < x-c, x-c> = -r^2 \text{ and } t > 0\},$$

Received December 30, 1992 and in revised form September 16, 1994

where <, > denotes the indefinite inner product on the Minkowski spacetime E_1^m . The point c is called the center of $S_1^{m-1}(c,r)$ and of $H^{m-1}(c,-r)$, respectively. We simply denote $S_1^{m-1}(0,r)$ and $H^{m-1}(0,-r)$ by $S_1^{m-1}(r)$ and $H^{m-1}(-r)$, respectively.

Let $x: M \to E_1^m$ be an isometric immersion from an n-dimensional Riemannian manifold M into E_1^m . Denote the position vector field of the immersion $x: M \to E_1^m$ also by x. Then we have (cf. [2])

$$\Delta x = -nH,$$

where H is the mean curvature vector of M in E_1^m .

If M is immersed into the de Sitter space-time $S_1^{m-1}(1)$ as a minimal submanifold, then H = -x (cf. [2]). Thus, (1.4) yields $\Delta H = nH$. This shows that the mean curvature vector H of M in the Minkowski space-time E_1^m is an eigenvector of the Laplacian Δ of M with eigenvalue n. The classification of surfaces with $\Delta H = \lambda H$ for some constant λ in a Euclidean 3-space was done by the author in 1988. In [4] the author classified submanifolds of the hyperbolic space $H^{m-1}(-1) \subset E_1^m$ whose mean curvature vector in E_1^m is an eigenvector of Δ .

In this paper, we study isometric immersions $x: M \to S_1^{m-1}(1) \subset E_1^m$ whose mean curvature vector H in E_1^m is an eigenvector of Δ , i.e., $\Delta H = \lambda H$ for some constant λ . Several classification theorems in this respect are obtained.

2. Preliminaries

Let $x: M \to E_1^m$ be an isometric immersion of an n-dimensional, Riemannian manifold M into the Minkowski space-time E_1^m . Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections on M and E_1^m , respectively. Let A, H, D and σ be the Weingarten map, the mean curvature vector, the normal connection, and the second fundamental form of M in E_1^m , respectively. We choose orthonormal local frame fields $e_1, \ldots, e_n, e_{n+1}, \ldots, e_m$ on M such that e_1, \ldots, e_n are tangent to M and e_{n+1}, \ldots, e_m are normal to M. Put $\epsilon_r = \langle e_r, e_r \rangle$, $r = 1, \ldots, m$. Then we have the following useful formula first obtained in [1, 2]:

(2.1)
$$\Delta H = \Delta^D H + \frac{n}{2} \operatorname{grad} \langle H, H \rangle + 2 \operatorname{trace} A_{DH} + \sum_{r=n+1}^m \epsilon_r \operatorname{trace} (A_H A_r) e_r,$$

where Δ^D is the Laplacian of the normal bundle and $A_r = A_{e_r}, r = n+1, \ldots, m$.

If M lies in the de Sitter space-time $S_1^{m-1}(1)$, then the position vector x is a unit normal vector field of M which is also normal to $S_1^{m-1}(1)$. If we choose $e_{n+1} = x$ and let H' denote the mean curvature vector of M in $S_1^{m-1}(1)$, then we have

$$(2.2) H = H' - x.$$

From (2.1) and (2.2) we find

(2.3)
$$\Delta H = \Delta^D H + \frac{n}{2} \operatorname{grad} \langle H, H \rangle + 2 \operatorname{trace} A_{DH} + nH'$$
$$- n(\langle H', H' \rangle + 1)x + \sum_{r=n+2}^{m} \epsilon_r \operatorname{trace} (A_{H'} A_r) e_r.$$

Since $e_{n+1} = x$, one has $\tilde{\nabla}_X e_{n+1} = X = -A_{n+1}X + D_X e_{n+1}$. Thus

(2.4)
$$A_{n+1} = A_x = -I, \quad De_{n+1} = 0.$$

We put

$$(2.5) De_r = \sum_{t=r+1}^m \omega_r^t e_t.$$

Then we have

(2.6)
$$\omega_r^s = -\epsilon_r \epsilon_s \omega_s^r, \quad r, s, t = n + 1, \dots, m.$$

Moreover, from (2.4), we have

(2.7)
$$\omega_{n+1}^{n+2} = \dots = \omega_{n+1}^m = 0.$$

By using (2.5), (2.6) and (2.7) and by a direct computation we may obtain

(2.8)
$$\Delta^{D} e_{n+2} = -\sum_{r=n+3}^{m} \left\{ \sum_{i=1}^{n} \sum_{t=n+3}^{m} \omega_{n+2}^{t}(e_{i}) \omega_{t}^{r}(e_{i}) + \operatorname{trace}\left(\nabla \omega_{n+2}^{r}\right) \right\} e_{r} \\ -\sum_{t=n+3}^{m} \sum_{i=1}^{n} \omega_{n+2}^{t}(e_{i}) \omega_{t}^{n+2}(e_{i}) e_{n+2},$$

where

trace
$$(\nabla \omega_{n+2}^r) = \sum_{i=1}^n (\nabla_{e_i} \omega_{n+2}^r)(e_i).$$

We recall the following result.

PROPOSITION 1: Let M be a pseudo-Riemannian submanifold of a pseudo-Euclidean space E_s^m . Then the mean curvature vector H of M in E_s^m satisfies $\Delta H = \lambda H$ for some constant λ if and only if either M is a biharmonic submanifold of E_s^m , i.e., $\Delta H = 0$, or M is of 1-type or of null 2-type.

Remark 1: Although Proposition 1 was stated in [3] only for submanifolds in Euclidean space, it is true for every pseudo-Riemannian submanifold of a pseudo-Euclidean space since the exact proof given in [3] works for pseudo-Riemannian submanifolds as well. (For general information on submanifolds of finite type, see, for instance, [1, 7].)

3. Submanifolds satisfying $\Delta H = \lambda H$ with $\lambda < n$

In this section we completely classify space-like submanifolds of $S_1^{m-1}(1)$ satisfying $\Delta H = \lambda H$ with $\lambda < n$.

THEOREM 2: Let M be an n-dimensional space-like submanifold of the de Sitter space-time $S_1^{m-1}(1)$, imbedded standardly in the Minkowski space-time E_1^m . Then the mean curvature vector H of M in E_1^m satisfies $\Delta H = \lambda H$ for some $\lambda < n$ if and only if M is contained in a space-like, non-totally geodesic, totally uniblical hypersurface of $S_1^{m-1}(1)$ as a minimal submanifold.

Proof: Let M be an n-dimensional space-like submanifold of the de Sitter space-time $S_1^{m-1}(1)$ which is imbedded standardly in the Minkowski space-time E_1^m . Assume the mean curvature vector H of M in E_1^m satisfies $\Delta H = \lambda H$ for some $\lambda < n$. Then, by (2.2) and (2.3), we find

(3.1)
$$\langle H', H' \rangle = \frac{\lambda}{n} - 1 < 0, \quad \langle H, H \rangle = \frac{\lambda}{n}.$$

Thus, M has constant mean curvatures in $S_1^{m-1}(-1)$ and in E_1^m . We put

(3.2)
$$H' = ae_{n+2}, \quad a^2 = 1 - \frac{\lambda}{n}.$$

We have

(3.3)
$$\epsilon_{n+2} = -1, \quad \epsilon_{n+3} = \cdots = \epsilon_m = 1.$$

From (2.8), (3.2) and (3.3) we find

(3.4)

$$\Delta^{D} H = \Delta^{D} H' = a \sum_{r=n+3}^{m} \left\{ \sum_{i=1}^{n} \sum_{t=n+3}^{m} \omega_{n+2}^{t}(e_i) \omega_r^{t}(e_i) - \operatorname{trace}(\nabla \omega_{n+2}^{r}) \right\} e_r$$
$$- ||De_{n+2}||^2 H',$$

where

(3.5)
$$||De_{n+2}||^2 = \sum_{i=1}^n \langle D_{e_i} e_{n+2}, D_{e_i} e_{n+2} \rangle.$$

By using (2.2), (2,3), (3.4) and $\Delta H = \lambda H$ we may obtain

(3.6)
$$n - \operatorname{trace}(A_{n+2}^2) - ||De_{n+2}||^2 = \lambda.$$

Combining (3.1) and (3.6) we get

(3.7)
$$n\operatorname{trace}(A_{n+2}^2) - (\operatorname{trace} A_{n+2})^2 = -n||De_{n+2}||^2.$$

Let $\kappa_1, \ldots, \kappa_n$ be the eigenvalues of A_{n+2} . We have

(3.8)
$$n \operatorname{trace}(A_{n+2}^2) - (\operatorname{trace}(A_{n+2}))^2 = \sum_{i < j} (\kappa_i - \kappa_j)^2.$$

From this we see that the left-hand-side of (3.7) is ≥ 0 and it is equal to 0 if and only if M is pseudo-umbilical in $S_1^{m-1}(1)$, i.e., $A_{H'} = \mu I$ for some nonzero function μ on M. On the other hand, because e_{n+3}, \ldots, e_m are space-like, (3.5) yields $||De_{n+2}|| \geq 0$. Therefore, both sides of (3.7) vanish identically. Consequently, we have

(3.9)
$$A_{H'} = \left(\frac{\lambda}{n} - 1\right)I, \quad A_H = \left(\frac{\lambda}{n}\right)I, \quad DH' = DH = 0.$$

Let

$$b = x - \frac{n}{\lambda}H.$$

Then

$$(3.10) \langle b, x \rangle = 1 + \frac{n}{\lambda}.$$

Moreover, (3.9) implies that b is a constant nonzero vector in E_1^m ; moreover, we also have $\langle x-b,x-b\rangle=n/\lambda$. Therefore, M also lies in the de Sitter spacetime $S_1^{m-1}(b,\sqrt{n/\lambda})$. Let N be the intersection of $S_1^{m-1}(b,\sqrt{n/\lambda})$ and $S_1^{m-1}(1)$. Then N is a non-totally geodesic hypersurface of $S_1^{m-1}(1)$. Because

$$H = \frac{\lambda}{n}(x - b),$$

M is minimal in $S_1^{m-1}(b, \sqrt{n/\lambda})$; and hence M is also a minimal submanifold of the hypersurface N of $S_1^{m-1}(b, \sqrt{n/\lambda})$.

Let

$$\xi = \left(1 + \frac{n}{\lambda}\right)x - b.$$

Then, ξ is a time-like normal vector field of N in $S_1^{m-1}(1)$. From the definition of ξ , we see that the Weingarten map of N in $S_1^{m-1}(1)$ at ξ is given by $-(1+n/\lambda)I$. This shows that N is a space-like, totally umbilical hypersurface of $S_1^{m-1}(1)$ with nonzero constant mean curvature. Consequently, we have proved that if M satisfies the condition: $\Delta H = \lambda H$ for some constant $\lambda < n$, then M is contained in a space-like, non-totally geodesic, totally umbilical hypersurface of $S_1^{m-1}(1)$ as a minimal submanifold.

Conversely, if M is contained in a space-like, non-totally geodesic, totally umbilical hypersurface N of $S_1^{m-1}(1)$ as a minimal submanifold, then the mean curvature vector H' of M in $S_1^{m-1}(1)$ is given by a constant multiple of the unit normal vector field of N in $S_1^{m-1}(1)$, restricted to M. Thus, M is a pseudo-umbilical submanifold in $S_1^{m-1}(1)$ with nonzero parallel mean curvature vector. Therefore,

(3.11)
$$DH' = DH = 0 \text{ and } A_{H'} = \mu I,$$

where μ is nonzero constant. From (3.11) we find

(3.12)
$$\Delta^D H = 0, \quad \langle H', H' \rangle = \mu, \quad \sum_{r=n+2}^m \epsilon_r \operatorname{trace}(A_{H'} A_r) e_r = n \mu H'.$$

Therefore, by (2.3), we get $\Delta H = nH' - n(\mu + 1)x + n\mu H' = n(\mu + 1)(H' - x) = n(\mu + 1)H$. This shows that H is an eigenvector of Δ with eigenvalue $\lambda = n(\mu + 1)$. Since H' is time-like, $\lambda < n$.

If a submanifold M is contained in a totally umbilical hypersurface of $S_1^{m-1}(1)$ as a minimal submanifold, then M is a 1-type submanifold of E_1^m . Therefore, by applying Theorem 2, we obtain the following

COROLLARY 3: If M is an n-dimensional, space-like submanifold of the de Sitter space-time $S_1^{m-1}(1)$ whose mean curvature vector H in E_1^m satisfies $\Delta H = \lambda H$ with $\lambda < n$, then M is of 1-type.

4. Submanifolds satisfying $\Delta H = nH$

In this section we completely classify n-dimensional space-like submanifolds of $S_1^{m-1}(1)$ whose mean curvature vector in E_1^m is an eigenvector of Δ with eigenvalue n.

THEOREM 4: Let $x: M \to S^{m-1}(1) \subset E_1^m$ be an isometric immersion from an n-dimensional Riemannian manifold M into the de Sitter space-time $S_1^{m-1}(1)$ which is imbedded standardly in the Minkowski space-time E_1^m . Then the mean curvature vector H of M in E_1^m is an eigenvector of Δ with eigenvalue n, i.e., $\Delta H = nH$, if and only if either (a) M is a minimal submanifold of $S_1^{m-1}(1)$ or (b) up to rigid motions of E_1^m , the isometric immersion x is given by

$$(4.1) x = (f + h, f + h, x_3, \dots, x_m),$$

where h is a harmonic function, f is an eigenfunction of Δ with eigenvalue n, and $y = (x_3, \ldots, x_m)$: $M \to S^{m-3}(1) \subset E^{m-2}$ is an isometric minimal immersion from M into the unit hypersphere $S^{m-3}(1)$ of a Euclidean (m-2)-space E^{m-2} .

Proof: Let $x: M \to S^{m-1}(1) \subset E_1^m$ be an isometric immersion from an n-dimensional Riemannian manifold M into the de Sitter space-time $S_1^{m-1}(1)$ which is imbedded standardly in the Minkowski space-time E_1^m . Assume M satisfies the condition

$$(4.2) \Delta H = nH.$$

Then, by (2.2), (2.3) and (4.2), we find

$$\langle H', H' \rangle = 0.$$

If $H' \equiv 0$, then M is a minimal submanifold of $S_1^{m-1}(1)$. Therefore, we assume $H' \neq 0$.

Since H' is a nonzero light-like vector field by (4.3), we may choose an orthonormal normal frame field e_{n+1}, \ldots, e_m such that e_{n+2} is time-like, e_{n+3}, \ldots, e_m are space-like, and moreover

(4.4)
$$H' = \delta(e_{n+2} + e_{n+3}), \quad \delta \neq 0.$$

From (2.2), (2.5), (2.6), (2.7) and (4.4) we find

$$\Delta^{D} H = (\Delta \delta)(e_{n+2} + e_{n+3}) - 2 \sum_{r=n+2}^{m} \{\omega_{n+2}^{r}(\nabla \delta) + \omega_{n+3}^{r}(\nabla \delta)\}e_{r}$$

$$- \delta \sum_{r=n+2}^{m} \{\operatorname{trace}(\nabla \omega_{n+2}^{r}) + \operatorname{trace}(\nabla \omega_{n+3}^{r})\}e_{r}$$

$$- \delta \sum_{i=1}^{n} \sum_{r=n+2}^{m} \{\omega_{n+2}^{t}(e_{i}) + \omega_{n+3}^{t}(e_{i})\}\omega_{t}^{r}(e_{i})e_{r}.$$

Combining this with (2.6), we find

$$\Delta^{D}H = \left\{ \left(\frac{\Delta\delta}{\delta} \right) - \operatorname{trace}(\nabla\omega_{n+3}^{n+2}) - 2\omega_{n+3}^{n+2}(\nabla\ln\delta) \right\} H'$$

$$- \delta \sum_{i=1}^{n} \sum_{t=n+2}^{m} \left\{ \omega_{n+2}^{t}(e_{i})\omega_{t}^{n+2}(e_{i}) + \omega_{n+3}^{t}(e_{i})\omega_{t}^{n+2}(e_{i}) \right\} e_{n+2}$$

$$(4.6) \qquad - \delta \sum_{i=1}^{n} \sum_{t=n+2}^{m} \left\{ \omega_{n+2}^{t}(e_{i})\omega_{t}^{n+3}(e_{i}) + \omega_{n+3}^{t}(e_{i})\omega_{t}^{n+3}(e_{i}) \right\} e_{n+3}$$

$$- \delta \sum_{r=n+4}^{m} \left\{ \operatorname{trace}(\nabla\omega_{n+2}^{r}) + \operatorname{trace}(\nabla\omega_{n+3}^{r}) + 2\omega_{n+2}^{r}(\nabla\ln\delta) + 2\omega_{n+3}^{r}(\nabla\ln\delta) + 2\omega_{n+3}^{r}(\nabla\ln\delta)$$

Since $\Delta H = nH = nH' - nx$, (2.2), (2.3) and (4.6) imply

$$nH' = \left\{ \left(\frac{\Delta \delta}{\delta} \right) - \operatorname{trace}(\nabla \omega_{n+3}^{n+2}) - 2\omega_{n+3}^{n+2}(\nabla \ln \delta) + n \right\} H'$$

$$- \delta \sum_{i=1}^{n} \sum_{t=n+2}^{m} \left\{ \omega_{n+2}^{t}(e_i)\omega_t^{n+2}(e_i) + \omega_{n+3}^{t}(e_i)\omega_t^{n+2}(e_i) \right\} e_{n+2}$$

$$- \delta \sum_{i=1}^{n} \sum_{t=n+2}^{m} \left\{ \omega_{n+2}^{t}(e_i)\omega_t^{n+3}(e_i) + \omega_{n+3}^{t}(e_i)\omega_t^{n+3}(e_i) \right\} e_{n+3}$$

$$- \operatorname{trace}(A_{H'}A_{n+2})e_{n+2} + \operatorname{trace}(A_{H'}A_{n+3})e_{n+3}.$$

By taking the inner product of this formula with H' and applying $\epsilon_{n+2} = -1$, $\epsilon_{n+3} = 1$, and (4.3) we find

$$\delta \sum_{i=1}^{n} \sum_{t=-1}^{m} \left\{ \omega_{n+2}^{t}(e_i) \omega_t^{n+2}(e_i) + \omega_{n+3}^{t}(e_i) \omega_t^{n+2}(e_i) \right\} + \operatorname{trace}(A_{H'} A_{n+2})$$

$$-\delta \sum_{i=1}^{n} \sum_{t=n+2}^{m} \{\omega_{n+2}^{t}(e_i)\omega_t^{n+3}(e_i) + \omega_{n+3}^{t}(e_i)\omega_t^{n+3}(e_i)\} + \operatorname{trace}(A_{H'}A_{n+3}) = 0.$$

From this, (2.6) and (4.4) we obtain

(4.7)
$$\sum_{i=1}^{n} \sum_{t=n+4}^{m} \{ (\omega_{n+2}^{t}(e_i))^2 + 2\omega_{n+2}^{t}(e_i)\omega_{n+3}^{t}(e_i) + (\omega_{n+3}^{t}(e_i))^2 \} + \operatorname{trace}(A_{n+2}^2) + 2\operatorname{trace}(A_{n+2}A_{n+3}) + \operatorname{trace}(A_{n+3}^2) = 0.$$

Let $\xi = e_{n+2} + e_{n+3}$. Then (4.7) yields

$$\sum_{i=1}^{n} \sum_{t=n+4}^{m} \{\omega_{n+2}^{t}(e_i) + \omega_{n+3}^{t}(e_i)\}^2 + \operatorname{trace}(A_{\xi}^2) = 0.$$

Consequently, we have

(4.8)
$$A_{\xi} = 0$$
 and $\langle D\xi, e_t \rangle = \langle D(e_{n+2} + e_{n+3}), e_t \rangle = 0$, $t = n+4, \dots, m$.

Without loss of generality we may assume $\omega_{n+2}^{n+3}=0$. This can be seen as follows. Since $A_{\xi}=0$, we have $A_{n+2}=-A_{n+3}$. Hence, by Ricci's equation, we have

$$\langle R^D(X,Y)e_{n+2}, e_{n+3} \rangle = \langle [A_{n+2}, A_{n+3}]X, Y \rangle = 0$$

which implies $d\omega_{n+2}^{n+3} = 0$. Hence, according to Poincare's lemma,

$$\omega_{n+2}^{n+3} = -d\theta$$

locally for some function θ . Put

(4.10)
$$\bar{e}_{n+2} = \sinh \theta e_{n+2} + \cosh \theta e_{n+3}, \quad \bar{e}_{n+3} = \cosh \theta e_{n+2} + \sinh \theta e_{n+3}.$$

Then $\{\bar{e}_{n+2}, \bar{e}_{n+3}\}$ is orthonormal such that \bar{e}_{n+2} is time-like and e_{n+3} is spacelike, and also H is parallel to $\bar{e}_{n+2} + \bar{e}_{n+3}$. Using (4.9) and (4.10), it follows that $\langle D\bar{e}_{n+2}, \bar{e}_{n+3} \rangle = 0$. This means that we may assume $\omega_{n+2}^{n+3} = 0$ by using a suitable e_{n+2}, e_{n+3} . Combining this with (4.8), we get $A_{\xi} = 0$ and $D\xi = 0$. Therefore, ξ is a nonzero constant vector in E_1^m . Since ξ is light-like, so up to rigid motions of E_1^m we may put

$$(4.11) \xi = (a, a, 0, \dots, 0)$$

for some nonzero constant a. Combining this with (4.4), we have

$$(4.12) H' = (h, h, 0, \dots, 0),$$

for some nonzero function h on M. Since $\langle x, H' \rangle = 0$, x takes the following form:

$$(4.13) x = (h + f, h + f, x_3, \dots, x_m),$$

for some functions f, x_3, \ldots, x_m . Combining (2.2) and (4.13) we get

$$(4.14) H = H' - x = -(f, f, x_3, \dots, x_m).$$

From (1.4), (4.13) and (4.14), we find

$$(4.15) \Delta x_3 = nx_3, \dots, \Delta x_m = nx_m, \quad \Delta h + \Delta f = nf.$$

On the other hand, because $\Delta H = nH$, (4.14) yields $\Delta f = nf$. Therefore, by (4.15), we obtain $\Delta h = 0$, i.e., h is a harmonic function on M.

If we put $y = (x_3, \ldots, x_m)$, then, by $\langle x, x \rangle = 1$, (4.13) implies $\langle y, y \rangle = 1$, where \langle , \rangle denotes the Euclidean inner product of E^{m-2} . Therefore, $y: M \to E^{m-2}$ is a mapping from M into the unit hypersphere $S^{m-3}(1)$ of E^{m-2} . Moreover, since x is an isometric immersion, (1.1) and (4.13) imply that y is also an isometric immersion. Furthermore, since $\Delta y = ny$ by (4.15), the isometric immersion $y: M \to S^{m-1}(1)$ is a minimal immersion.

Conversely, suppose $y: M \to S^{m-3}(1) \subset E^{m-2}$ is an isometric minimal immersion from an n-dimensional Riemannian manifold M into the unit hypersphere $S^{m-3}(1)$. Put $y=(x_3,\ldots,x_m)$. Let h be a harmonic function on M and f an eigenfunction of Δ with eigenvalue n. (The existence of such an eigenfunction f is guaranteed, since M admits an isometric minimal immersion into $S^{m-3}(1)$.) If we define an immersion $x: M \to E_1^m$ by

(4.16)
$$x = (h + f, h + f, x_3, \dots, x_m),$$

then, by direct computation, one may verify that x is an isometric immersion from M into the de Sitter space-time $S_1^{m-1}(1)$ whose mean curvature vector H in E_1^m is an eigenvector of Δ with eigenvalue n.

Finally, recall that when M is a minimal submanifold of $S_1^{m-1}(1)$, we have $\Delta H = nH$ as mentioned in §1.

Remark 2: A submanifold given by (4.1) is of null 2-type if h is a non-constant harmonic function on M.

5. Submanifolds satisfying $\Delta H = \lambda H$ with $\lambda > n$

First we give the following

THEOREM 5: Let λ be a real number > n, c a space-like vector in E_1^m satisfying $\langle c,c\rangle=1-n/\lambda>0$, and $N_1(c)$ the hypersurface of the de Sitter space-time S_1^{m-1} defined by

(5.1)
$$N_1(c) = \{ x \in S_1^{m-1}(1) : \langle c, x \rangle = \langle c, c \rangle \}.$$

Then

- (a) $N_1(c)$ is a totally umbilical hypersurface of $S_1^{m-1}(1)$ with nonzero constant mean curvature;
- (b) if M is an n-dimensional, space-like, minimal submanifold of $N_1(c)$, then
- (b-1) M is a pseudo-umbilical submanifold of $S_1^{m-1}(1)$;
- (b-2) the mean curvature vector H' of M in $S_1^{m-1}(1)$ is a nonzero parallel normal vector field; and
- (b-3) the mean curvature vector H of M in E_1^m satisfies $\Delta H = \lambda H$ for some constant $\lambda > n$.

Conversely, if $x: M \to S_1^{m-1}(1) \subset E_1^m$ is an isometric immersion of an n-dimensional Riemannian manifold such that the mean curvature vector field H of M in E_1^m satisfies conditions (b-2) and (b-3), then x(M) is contained in $N_1(c)$ as a minimal submanifold, where c is a space-like vector in E_1^m with $\langle c, c \rangle = 1 - n/\lambda$.

Proof: Let $\lambda > n$, c a space-like vector in E_1^m satisfying $\langle c,c \rangle = 1-n/\lambda > 0$, and $N_1(c)$ the hypersurface of $S_1^{m-1}(1)$ defined by (5.1). Then $N_1(c)$ is the intersection of $S_1^{m-1}(1)$ and $S_1^{m-1}(c,\sqrt{n/\lambda})$. Let $\eta = c - (1-n/\lambda)x$. Then η is a space-like nonzero normal vector field of N in $S_1^{m-1}(1)$ with $\langle \eta, \eta \rangle = n(\lambda - n)/\lambda^2 > 0$.

From the definition of η we have $A_{\eta}=(1-n/\lambda)I$. Thus, $N_1(c)$ is a nontotally geodesic, totally umbilical hypersurface of $S_1^{m-1}(1)$ with constant mean curvature. This proves statement (a). Let M be an n-dimensional space-like minimal submanifold of $N_1(c)$. Then M is a pseudo-umbilical submanifold with parallel nonzero mean curvature vector H' in $S_1^{m-1}(1)$. From these we may obtain $\Delta H=\lambda H$ with $\lambda=n(\langle H',H'\rangle+1)$. Because H' is space-like, $\lambda>n$. This proves statement (b).

Conversely, assume $x: M \to S_1^{m-1}(1) \subset E_1^m$ is an isometric immersion of an *n*-dimensional Riemannian manifold such that the mean curvature vector field H of M in E_1^m satisfies conditions (b-2) and (b-3). Then, by (2.2)-(2.8), we may obtain, as in §3, the following formulas:

(5.2)
$$\langle H', H' \rangle = \frac{\lambda}{n} - 1,$$

(5.3)
$$n\operatorname{trace}(A_{n+2}^2) - (\operatorname{trace} A_{n+2})^2 = -n ||De_{n+2}||^2.$$

Because the mean curvature vector H' is assumed to be parallel by (b-2), (3.8) and (5.2) imply that M is a pseudo-umbilical submanifold of $S_1^{m-1}(1)$. Therefore, by (b-2) and (b-3), we get

(5.4)
$$A_H = \left(\frac{\lambda}{n}\right)I, \quad DH = 0.$$

Let

$$c = x + \frac{n}{\lambda}H.$$

Then c is a space-like vector in E_1^m satisfying $\langle c,c\rangle=1-n/\lambda$ and $\langle x-c,x-c\rangle=n/\lambda$. Because the mean curvature vector H of M in E_1^m is parallel to x-c, M is a minimal submanifold of the de Sitter space-time $S_1^{m-1}(c,\sqrt{n/\lambda})$. Moreover, since $N_1(c)$ is the intersection of $S_1^{m-1}(1)$ and $S_1^{m-1}(c,\sqrt{n/\lambda})$, M is a minimal submanifold of $N_1(c)$.

Remark 3: If M is a space-like hypersurface of the de Sitter space-time $S_1^{n+1}(1)$ satisfying the condition $\Delta H = \lambda H$, then condition (b-2) of Theorem 5 holds automatically. Thus, by Theorems 2, 4 and 5, we have complete classification of such hypersurfaces.

Theorem 5 provides us many examples of space-like submanifolds of $S_1^{m-1}(1)$ satisfying the condition: $\Delta H = \lambda H$ with $\lambda > n$. The following theorem provides us many other examples.

THEOREM 6: Let $m \ge 6$, r be a real number such that 0 < r < 1, and

$$y = (y_4, \ldots, y_m): M \to S^{m-4}(r) \subset E^{m-3}$$

an isometric minimal immersion from an n-dimensional Riemannian manifold M into the hypersphere $S^{m-4}(r)$ of E^{m-3} centered at the origin and with radius r.

Then, for any non-constant harmonic function h on M and any eigenfunction f of Δ on M with eigenvalue n/r, the mapping $x: M \to E_1^m$ given by

(5.5)
$$x = (f + h, f + h, \sqrt{1 - r^2}, y_4, \dots, y_m)$$

defines an isometric immersion from M into the de Sitter space-time $S_1^{m-1}(1)$ satisfying the following two conditions:

- (a) $\Delta H = \lambda H$ with $\lambda = n/r^2 > n$;
- (b) $DH = \omega \xi$ for some 1-form $\omega \neq 0$ and constant light-like vector $\xi \neq 0$.

Conversely, if $x: M \to S_1^{m-1}(1) \subset E_1^m$ is an isometric immersion of an n-dimensional Riemannian manifold satisfying conditions (a) and (b), then, up to rigid motions of E_1^m , the immersion x is given by (5.5) for some isometric minimal immersion $y = (y_4, \ldots, y_m): M \to S^{m-4}(r) \subset E^{m-3}$, real number r with 0 < r < 1, harmonic function r, and eigenfunction r of r with eigenvalue r/r^2 .

Proof: Let r be a real number such that 0 < r < 1 and let

$$y = (y_4, \ldots, y_m): M \to S^{m-4}(r) \subset E^{m-3}$$

be an isometric minimal immersion from an n-dimensional Riemannian manifold M into the hypersphere $S^{m-4}(r)$ of E^{m-3} centered at the origin and with radius r. Then, for any harmonic function h on M and any eigenfunction f of Δ on M with eigenvalue n/r^2 , we define a mapping $x: M \to E_1^m$ by

(5.6)
$$x = (f + h, f + h, \sqrt{1 - r^2}, y_4, \dots, y_m).$$

From (5.6) we obtain $dx = (df + dh, df + dh, 0, dy_4, \ldots, dy_m)$. Hence, by (1.1), $\langle dx, dx \rangle = \langle dy, dy \rangle$. This implies that the mapping x defined by (5.6) is an isometric immersion from M into E_1^m . Furthermore, (1.1) and (5.6) yield $1 = \langle x, x \rangle = 1 - r^2 + \langle y, y \rangle$. Thus, x(M) is contained in the de Sitter space-time $S_1^{m-1}(1)$.

On the other hand, because $y = (y_4, \ldots, y_m)$: $M \to S^{m-4}(r) \subset E^{m-3}$ is an isometric minimal immersion from the *n*-dimensional Riemannian manifold M into the hypersphere $S^{m-4}(r)$ of E^{m-3} centered at the origin and with radius r, we have $\Delta y = (n/r^2)y$. Therefore, (1.4) and (5.6) yield

(5.7)
$$H = -\frac{1}{r^2}(f, f, 0, y_4, \dots, y_m),$$

by the fact that h is a harmonic function. From (5.7) we obtain $\Delta H = \lambda H$ with $\lambda = n/r^2 > n$. Moreover, (2.2) and (5.7) give

(5.8)
$$H' = \frac{\lambda}{n}(h, h, \sqrt{1 - r^2}, 0, \dots, 0) + \left(1 - \frac{\lambda}{n}\right) x.$$

Therefore

(5.9)
$$A_{H'} = \left(\frac{\lambda}{n} - 1\right) I, \quad D_X H' = \frac{\lambda}{n} (Xh, Xh, 0, \dots, 0),$$

for any vector X tangent to M. We put

(5.10)
$$\xi = (1, 1, 0, \dots, 0), \quad \omega = \left(\frac{\lambda}{n}\right) dh.$$

Then ξ is a nonzero light-like constant vector in E_1^m and ω is a nonzero 1-form on M satisfying $DH = DH' = \omega \xi$.

Conversely, suppose $x: M \to S_1^{m-1}(1) \subset E_1^m$ is an isometric immersion of an *n*-dimensional Riemannian manifold satisfying conditions (a) and (b) of Theorem 6. Then, (2.2)–(2.8) and condition (a) imply

(5.11)
$$\langle H', H' \rangle = \frac{\lambda}{n} - 1, \quad \langle H, H \rangle = \frac{\lambda}{n},$$

(5.12)
$$n\operatorname{trace}(A_{n+2}^2) - (\operatorname{trace} A_{n+2})^2 = -n ||De_{n+2}||^2.$$

From (5.11) we see that H' is a space-like nonzero vector.

We put $H' = \alpha' e_{n+2}$. Condition (b) yields

(5.13)
$$||De_{n+2}||^2 = \sum_{i=1}^n \langle D_{e_i} e_{n+2}, D_{e_i} e_{n+2} \rangle = 0.$$

Combining (3.8), (5.12) and (5.13), it follows that M is a pseudo-umbilical submanifold of $S_1^{m-1}(1)$ with

(5.14)
$$A_{H'} = \left(\frac{\lambda}{n} - 1\right)I, \quad DH' = \omega \xi.$$

Therefore, by applying the equation of Weingarten, we find

(5.15)
$$\tilde{\nabla}_X H' = \left(1 - \frac{\lambda}{n}\right) X + \omega(X) \xi.$$

On the other hand, since $\tilde{\nabla}_X x = X$ for any vector X tangent to M, (5.15) yields

(5.16)
$$\tilde{\nabla}_X \left(H' + \left(\frac{\lambda}{n} - 1 \right) x \right) = \omega(X) \xi.$$

Because ξ is a nonzero light-like constant vector in E_1^m , up to rigid motions of E_1^m , ξ is given by $\xi = (\mu, \mu, 0, \dots, 0)$ for some nonzero function μ . Furthermore, replacing ω by $\mu\omega$, if necessary, we may assume

(5.17)
$$\xi = (1, 1, 0, \dots, 0).$$

From (5.16) and (5.17) we get

(5.18)
$$d\left(H' + \left(\frac{\lambda}{n} - 1\right)x\right) = (\omega, \omega, 0, \dots, 0).$$

Put

(5.19)
$$H' = (f_1, f_2, \dots, f_m), \quad x = (x_1, \dots, x_m).$$

Then (5.18) and (5.19) imply

(5.20)
$$\omega = dh, \quad h = f_1 + \left(\frac{\lambda}{n} - 1\right) x_1, \quad dh = d\left(f_2 + \left(\frac{\lambda}{n} - 1\right) x_2\right).$$

Combining (2.2), (5.18), (5.19) and (5.20), we find

(5.21)
$$H' + \left(\frac{\lambda}{n} - 1\right)x = (h, h, 0, \dots, 0) + c,$$

for some $c = (c_1, \ldots, c_m) \in E_1^m$. From (5.11) and (5.21) it follows that

$$(5.22) 2\langle c, (h, h, 0, \dots, 0) \rangle = \frac{\lambda}{n} \left(\frac{\lambda}{n} - 1 \right) - \langle c, c \rangle.$$

(1.1) and (5.22) imply that $(c_1 - c_2)h$ is a constant function on M. Because $\omega = dh$ is a nonzero 1-form, h is not a constant function. Hence, $c_1 = c_2$. If we denote c_1 by b and replace h + b by h, then we have $c = (0, 0, c_3, \ldots, c_m)$. Therefore, by applying a rigid motion of E_1^m if necessary, we can assume c takes the form $c = (0, 0, e, 0, \ldots, 0)$. Therefore, by (2.2), (5.19), and (5.21), we have

$$(5.23) H + \frac{\lambda}{n}x = H' + \left(\frac{\lambda}{n} - 1\right)x = (h, h, e, 0, \dots, 0), ext{ } e = \sqrt{\frac{\lambda}{n}\left(\frac{\lambda}{n} - 1\right)}.$$

By applying condition (a), (1.4) and (5.23), we obtain

$$0 = \Delta H - \lambda H = \Delta H + \frac{\lambda}{n} \Delta x = (\Delta h, \Delta h, 0, \dots, 0).$$

Therefore, $\Delta h = 0$. Consequently, h is a non-constant harmonic function on M. Combining (2.2) and (5.23) we get

(5.24)
$$x = \frac{n}{\lambda}((h, h, e, 0, \dots, 0) - H), \quad \Delta h = 0.$$

By using $\langle x, x \rangle = 1$ together with (5.11) and (5.24), we may obtain

$$\langle H, (h, h, e, 0, \ldots, 0) \rangle = 0.$$

Therefore, by (1.1) and (5.19),

$$(5.25) ef_3 = (f_1 - f_2)h.$$

Moreover, from condition (a) and (5.19),

(5.26)
$$\Delta f_A = \lambda f_A, \quad \lambda = \frac{n}{r^2}, \quad A = 1, \dots, m.$$

From (2.2), (2.4) and (5.14) it follows $A_H = \lambda/nI$, $DH = \omega \xi$. Therefore, by applying the equation of Weingarten and (5.17), we find

$$(5.27) (Xf_1,\ldots,Xf_m) = \tilde{\nabla}_X H = -\left(\frac{\lambda}{n}\right) X + (\omega(X),\omega(X),0,\ldots,0).$$

By taking the inner product of (5.26) with the light-like normal vector ξ , we get $Xf_1 - Xf_2 = 0$ for any vector X tangent to M. This shows that $f_1 - f_2$ is a constant function. Combining this with (5.24), (5.25) and (5.26), we obtain $f_1 = f_2$, $f_3 = 0$. Put

$$f = \frac{n}{\lambda} f_1$$
, $y_A = -\frac{n}{\lambda} f_A$, $A = 4, \dots, m$ and $h_1 = \frac{n}{\lambda} h$.

Then

(5.28)
$$x = (f + h_1, f + h_1, \sqrt{1 - n/\lambda}, y_4, \dots, y_m),$$

where h_1 is a nonconstant harmonic function, and f, y_4, \ldots, y_m are eigenfunctions of Δ with eigenvalue n/r^2 . Put $y = (y_4, \ldots, y_m)$. Then $\langle dy, dy \rangle = \langle dx, dx \rangle$, which

implies that y is an isometric immersion from M into E^{m-3} . Moreover, because $1 = \langle x, x \rangle = 1 - n/\lambda + \langle y, y \rangle$, we have $\langle y, y \rangle = r^2$. Thus, y(M) is contained in the hypersphere $S^{m-4}(r)$ of E^{m-3} centered at the origin and with radius $r = \sqrt{n/\lambda}$. Furthermore, because y_4, \ldots, y_m are eigenfunctions of Δ with eigenvalue n/r, M is immersed in $S^{m-4}(r)$ as a minimal submanifold.

Thereom 6 shows in particular that, for $m \geq 6$, there exist many space-like surfaces in $S_1^{m-1}(1)$ whose mean curvature vector H in E_1^m satisfies the condition $\Delta H = \lambda H$ for some $\lambda > 2$ and $DH \neq 0$. However, the following result shows that there do not exist such surfaces if $m \leq 5$.

THEOREM 7: Let $x: M \to S_1^4(1) \subset E_1^5$ be an isometric immersion from a 2-dimensional Riemannain manifold M into the 4-dimensional de Sitter space-time $S_1^4(1)$ such that the mean curvature vector H of M in E_1^5 satisfies the condition $\Delta H = \lambda H$ for some $\lambda > 2$. Then the mean curvature vector H is parallel in the normal bundle and M lies in a non-totally geodesic, totally umbilical hypersurface of $S_1^4(1)$ as a minimal submanifold.

Proof: Under the hypothesis, the mean curvature vector H' of M in $S_1^4(1)$ is a space-like vector field. We choose orthonormal normal frame field e_3 , e_4 , e_5 such that $e_3 = x$ and $H' = \alpha' e_4$ with $\alpha' = |H'|$. We have $\epsilon_3 = \epsilon_4 = -\epsilon_5 = 1$. By using (2.2), (2.3) and (2.8), we may find

$$(5.29) DH = DH' = \omega_4^5 e_5,$$

(5.30)
$$\langle H', H' \rangle = \frac{1}{2}(\lambda - 2), \quad \operatorname{trace} A_{DH} = 0, \quad \operatorname{trace}(\nabla \omega_4^5) = 0,$$

(5.31)
$$2 + \operatorname{trace}(A_4^2) - ||\omega_4^5||^2 = \lambda.$$

If DH=0, then DH'=0; and hence, the result follows from Theorem 4. So we assume $DH=\omega_4^5e_5\neq 0$. In this case, $\omega_4^5\neq 0$. Since trace $A_5=0$, (5.29) and trace $A_{DH}=0$ yield $A_5=0$. Choose e_1,e_2 to be the eigenvectors of A_4 with eigenvalues κ_1,κ_2 , respectively. By applying the equation of Codazzi and the condition $A_5=0$, we may obtain

(5.32)
$$\kappa_1 \omega_4^5(e_2) = \kappa_2 \omega_4^5(e_1) = 0,$$

(5.33)
$$e_1 \kappa_2 = \omega_1^2(e_2)(\kappa_1 - \kappa_2), \quad e_2 \kappa_1 = \omega_2^1(e_1)(\kappa_2 - \kappa_1).$$

Without loss of generality, we may assume by (5.32) that $\kappa_2 = \omega_4^5(e_2) = 0$. Since the mean curvature of M in $S_1^4(1)$ is constant and $\kappa_2 = 0$, κ_1 is a nonzero constant. Therefore, (5.33) implies $\omega_1^2 = 0$. Therefore, M is flat.

On the other hand, because det $A_3 = 1$ and det $A_4 = \det A_5 = 0$, the equation of Gauss implies that M has constant Gaussian curvature 1, so M is non-flat. Thus, we obtain a contradiction.

Remark 4: For submanifolds in a hypersphere of a Euclidean space and submanifolds of a hyperbolic space, we may prove (1): If M is an n-dimensional submanifold of a unit hypersphere $S^{m-1}(1)$ of a Euclidean m-space E^m , then M is a minimal submanifold of $S^{m-1}(1)$ if and only if the mean curvature vector H of M in E^m is an eigenvector of Δ with eigenvalue n; and (2) If M is an n-dimensional submanifold of the hyperbolic space $H^{m-1}(-1)$, imbedded standardly in the Minkowski space-time E_1^m , then M is a minimal submanifold of $H^{m-1}(-1)$ if and only if the mean curvature vector of M in E_1^m is an eigenvector of Δ with eigenvalue -n.

Remark 5: In [6], Dillen, Pas and Verstraelen studied surfaces in E^3 whose Gauss map G satisfies the condition: $\Delta G = AG$ for some 3×3 matrix A. Investigation of submanifolds in an m-dimensional Euclidean space (or pseudo-Euclidean space) whose mean curvature vector H satisfies the condition: $\Delta H = AH$ for some $m \times m$ matrix A can be found in [5].

ACKNOWLEDGEMENT: The author would like to thank the referee for his valuable suggestions.

References

- [1] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
- [2] B.Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Mathematical Journal 8 (1985), 358-374.
- [3] B.Y. Chen, Null 2-type surfaces in Euclidean space, Algebra, Analysis and Geometry (1988), 1–18.
- [4] B.Y. Chen, Some classification theorems for submanifolds in Minkowski space-time, Archiv der Mathematik **62** (1994), 177–182.

- [5] B.Y. Chen, Submanifolds of Euclidean spaces satisfying $\Delta H = AH$, Tamkang Journal of Mathematics 25 (1994), 75–85.
- [6] F. Dillen, J. Pas and L. Verstraelen, On the Gauss map of surfaces of revolution, Bulletin of the Institute of Mathematics. Academia Sinica 18 (1990), 239–246.
- [7] L. Verstraelen, On submanifolds of finite Chen type and of restricted type, Results in Mathematics 20 (1991), 744-755.